organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,6-Anhydro-1-deoxy-3,4-O-isopropylidene-3-C-methyl-β-D-*ribo*-hex-2-ulofuranose

Louise A. Curran,^a Sarah F. Jenkinson,^a* Nigel A. Jones,^a David J. Watkin^b and George W. J. Fleet^a

^aDepartment of Organic Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, England, and ^bDepartment of Chemical Crystallography, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, England Correspondence e-mail: sarah.jenkinson@chem.ox.ac.uk

Received 27 June 2007; accepted 27 June 2007

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.002 Å; R factor = 0.031; wR factor = 0.074; data-to-parameter ratio = 10.8.

The relative configuration of the title compound, $C_{10}H_{16}O_4$, was firmly established by X-ray crystallographic analysis. The absolute configuration was determined by the use of 2-*C*-methyl-D-ribono-1,4-lactone as the starting material.

Related literature

For related literature see: Curran *et al.* (2007); Jones *et al.* (2007); Hotchkiss *et al.* (2006).

Experimental

Crystal data

C₁₀H₁₆O₄ $M_r = 200.23$ Orthorhombic, $P2_12_12_1$ a = 6.6307 (2) Å b = 11.1029 (4) Å c = 14.1409 (5) Å

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan DENZO/SCALEPACK(Otwinowski & Minor, 1997) $T_{min} = 0.95, T_{max} = 1.00$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.031 & 127 \text{ parameters} \\ wR(F^2) = 0.074 & H\text{-atom parameters constrained} \\ S = 0.93 & \Delta\rho_{max} = 0.24 \text{ e } \text{\AA}^{-3} \\ 1370 \text{ reflections} & \Delta\rho_{min} = -0.19 \text{ e } \text{\AA}^{-3} \end{array}$

V = 1041.05 (6) Å³

Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$

 $0.60 \times 0.50 \times 0.10 \ \mathrm{mm}$

6557 measured reflections

1370 independent reflections

1160 reflections with $I > 2\sigma(I)$

Z = 4

T = 150 K

 $R_{\rm int} = 0.045$

Data collection: *COLLECT* (Nonius, 2001); cell refinement: *DENZO/SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO/SCALEPACK*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *CAMERON* (Watkin *et al.*, 1996); software used to prepare material for publication: *CRYSTALS*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2449).

References

Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Curran, L. A., Jenkinson, S. F., Jones, N. A., Watkin, D. J. & Fleet, G. W. J. (2007). Acta Cryst. E63, 03387.
- Hotchkiss, D. J., Jenkinson, S. F., Storer, R., Heinz, T. & Fleet, G. W. J. (2006). *Tetrahedron Lett.* 47, 315–318.
- Jones, N. A., Curran, L. A., Wormald, M. R., Dwek, R. A. & Fleet, G. W. J. (2007). In preparation.

Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.

- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

supplementary materials

Acta Cryst. (2007). E63, o3388 [doi:10.1107/S1600536807031546]

2,6-Anhydro-1-deoxy-3,4-O-isopropylidene-3-C-methyl-β-D-ribo-hex-2-ulofuranose

L. A. Curran, S. F. Jenkinson, N. A. Jones, D. J. Watkin and G. W. J. Fleet

Comment

For background information see the previous paper (Curran *et al.*, 2007). The crystal structure of the title compound (Fig. 1) exists as alternating layers of molecules running parallel to the *ab*-face (Fig.2). There is no hydrogen bonding.

Experimental

Treatment of 1-deoxy-3-*C*-methyl-D-psicose **2** (Jones *et al.* in preparation) derived from 2-*C*-methyl-D-ribono-1,4-lactone **1** (Hotchkiss *et al.*, 2006), with sodium cyanide, gave a mixture of 2,6-anhydro derivative **3** and lactone **4** (Curran *et al.* 2007) (Fig. 3). X-ray analysis firmly established the structure of the title compound as the 2,6-anhydro furanose **3**. m.p. 321-326 K; $[\alpha]_D^{22}$ -47.0 (*c*, 1.0 in acetone).

Refinement

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the starting material.

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and U_{iso} (H) (in the range 1.2–1.5 times U_{eq} of the parent atom), after which the positions were refined with riding constraints.

Figures

Fig. 1. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.

Fig. 2. Packing of the title compound projected along the *b*-axis.

Fig. 3. The reaction scheme.

2,6-Anhydro-1-deoxy-3,4-O-isopropylidene-3-C-methyl-β-D-*ribo*-hex-2-ulofuranose

Crystal data	
$C_{10}H_{16}O_4$	$F_{000} = 432$
$M_r = 200.23$	$D_{\rm x} = 1.277 \ {\rm Mg \ m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 1321 reflections
a = 6.6307 (2) Å	$\theta = 5-27^{\circ}$
b = 11.1029 (4) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 14.1409 (5) Å	<i>T</i> = 150 K
V = 1041.05 (6) Å ³	Plate, colourless
Z = 4	$0.60\times0.50\times0.10\ mm$
Data collection	
Nonius KappaCCD diffractometer	1160 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.045$
T = 150 K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 5.3^{\circ}$
Absorption correction: multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997)	$h = -8 \rightarrow 8$
$T_{\min} = 0.95, T_{\max} = 1.00$	$k = -14 \rightarrow 14$
6557 measured reflections	$l = -18 \rightarrow 18$
1370 independent reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.031$	$w = 1/[\sigma^{2}(F^{2}) + (0.03P)^{2} + 0.18P],$ where $P = [\max(F_{o}^{2}, 0) + 2F_{c}^{2}]/3$
$wR(F^2) = 0.074$	$(\Delta/\sigma)_{\rm max} = 0.0002$

S = 0.93

1370 reflections127 parameters

$$\begin{split} \Delta \rho_{max} &= 0.24 \text{ e } \text{\AA}^{-3} \\ \Delta \rho_{min} &= -0.19 \text{ e } \text{\AA}^{-3} \\ \text{Extinction correction: None} \end{split}$$

Primary atom site location: structure-invariant direct

methods

Fractional atomic coordinates and isotr	ropic or equivalent isotropic	displacement parameters $(Å^2)$
---	-------------------------------	---------------------------------

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.3568 (2)	0.21011 (14)	0.20100 (10)	0.0212
C2	0.4422 (2)	0.31928 (14)	0.14619 (10)	0.0217
O3	0.56240 (17)	0.37828 (10)	0.21534 (8)	0.0263
C4	0.6883 (2)	0.27622 (15)	0.23612 (11)	0.0272
C5	0.5351 (2)	0.18346 (15)	0.26887 (10)	0.0245
O6	0.46475 (18)	0.21350 (13)	0.36068 (7)	0.0352
C7	0.2509 (3)	0.22921 (16)	0.35888 (11)	0.0270
O8	0.19903 (16)	0.25108 (11)	0.26189 (7)	0.0283
C9	0.1985 (3)	0.34073 (17)	0.41531 (13)	0.0403
C10	0.1483 (3)	0.11679 (18)	0.39421 (13)	0.0396
C11	0.7600 (3)	0.24199 (19)	0.13709 (12)	0.0353
012	0.58629 (17)	0.27261 (11)	0.07985 (8)	0.0317
C13	0.2974 (3)	0.40276 (16)	0.09881 (12)	0.0305
C14	0.2857 (3)	0.10662 (15)	0.13904 (12)	0.0308
H41	0.8009	0.2937	0.2816	0.0355*
H51	0.5810	0.0978	0.2636	0.0310*
H91	0.0522	0.3542	0.4084	0.0621*
H92	0.2310	0.3255	0.4825	0.0614*
Н93	0.2804	0.4099	0.3910	0.0617*
H101	0.0017	0.1299	0.3883	0.0594*
H102	0.1804	0.1039	0.4613	0.0595*
H103	0.1903	0.0467	0.3550	0.0594*
H111	0.7881	0.1541	0.1327	0.0480*
H112	0.8841	0.2875	0.1191	0.0473*
H131	0.3743	0.4706	0.0698	0.0479*
H132	0.1972	0.4328	0.1459	0.0487*
H133	0.2281	0.3599	0.0465	0.0489*
H141	0.2242	0.0438	0.1796	0.0485*
H142	0.4037	0.0743	0.1055	0.0487*
H143	0.1825	0.1383	0.0923	0.0481*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0180 (7)	0.0224 (8)	0.0231 (7)	0.0020 (7)	-0.0018 (6)	-0.0006 (7)
C2	0.0217 (7)	0.0228 (8)	0.0207 (7)	0.0003 (7)	-0.0004 (7)	-0.0020(6)
O3	0.0255 (6)	0.0219 (5)	0.0316 (6)	-0.0021 (5)	-0.0053 (5)	-0.0018 (5)
C4	0.0185 (7)	0.0304 (9)	0.0326 (8)	0.0012 (8)	-0.0031 (7)	0.0014 (8)
C5	0.0219 (8)	0.0267 (8)	0.0248 (7)	0.0014 (8)	-0.0033 (7)	0.0028 (7)

supplementary materials

06 C7 08 C9	0.0274 (6) 0.0257 (8) 0.0205 (5) 0.0467 (12)	0.0560 (8) 0.0348 (10) 0.0431 (7) 0.0394 (10)	0.0221 (5) 0.0204 (7) 0.0214 (5) 0.0347 (9)	0.0010 (7) -0.0004 (8) 0.0029 (6) 0.0016 (10)	-0.0034 (5) -0.0008 (6) 0.0011 (5) -0.0041 (9)	0.0044 (6) 0.0021 (7) 0.0025 (5) -0.0070 (8)
	0.0441 (11)	0.0375 (10)	0.0372 (9)	-0.0035 (10)	0.0063 (9)	0.0071 (9)
012	0.0221 (8)	0.0443(11)	0.0394 (10)	0.0043 (9)	0.0037 (8)	0.0026 (9)
012	0.0273(6)	0.0415(7)	0.0262 (5)	0.0031 (6)	0.0057(5)	0.0001(6)
C13	0.0350(10)	0.0261 (8)	0.0304(8)	0.0022 (9)	-0.0060(8)	0.0045 (7)
014	0.0323 (9)	0.0234 (8)	0.0348 (9)	-0.0029 (8)	-0.0085 (8)	-0.0010 (8)
Geometric paran	neters (Å, °)					
C1—C2		1.546 (2)	C7—C1	0	1.507	(3)
C1—C5		1.551 (2)	С9—Н9	91	0.986	
C1—O8		1.4293 (18)	С9—Н9	2	0.988	
C1-C14		1.520 (2)	С9—Н9	03	1.001	
C2—O3		1.4214 (18)	С10—Н	101	0.986	
C2—O12		1.4357 (18)	С10—Н	102	0.983	
C2—C13		1.493 (2)	С10—Н	103	0.995	
O3—C4		1.438 (2)	C11—0	12	1.448 (2)	
C4—C5		1.519 (2)	С11—Н	111	0.995	
C4—C11		1.527 (2)	С11—Н	112	0.998	
C4—H41		1.004	С13—Н	1131	0.998	
C5—O6		1.4193 (19)	С13—Н	132	0.999	
C5—H51		1.001	С13—Н	133	0.993	
O6—C7		1.429 (2)	С14—Н	141	0.991	
C7—O8		1.4348 (18)	C14—H142		0.983	
С7—С9		1.514 (2)	С14—Н	143	1.014	
C2-C1-C5		100.40 (12)	С7—О8	—C1	110.27	7 (12)
C2—C1—O8		108.70 (12)	С7—С9—Н91		107.3	
C5—C1—O8		104.24 (11)	С7—С9—Н92		108.4	
C2-C1-C14		114.66 (13)	H91—C9—H92		109.6	
C5-C1-C14		116.67 (13)	С7—С9—Н93		108.8	
08—C1—C14		111.16 (13)	Н91—С9—Н93		112.5	
C1—C2—O3		102.81 (11)	Н92—С9—Н93		110.0	
C1—C2—O12		106.76 (12)	C7—C1	0—H101	107.1	
O3—C2—O12		104.05 (12)	C7—C1	0—H102	110.0	
C1—C2—C13		118.43 (14)	H101—	C10—H102	108.4	
O3—C2—C13		112.53 (13)	C/—CI	0—H103	109.6	
012-02-013		111.02 (13)	H101—	C10—H103	110.2	
$C_2 = 0_3 = C_4$		95.90 (11)	H102—	CI0—H103	111.4	2 (12)
03 - 04 - 05		102.05 (13)	C4—C1	I-012	101.92	2 (12)
03-04-011		100.93(13)	C4—C1	1—HIII	111.1	
C_{3} C_{4} U_{41}		108.61 (15)	012-0	11—HIII	110.1	
03 - 04 - H41		114.2	C4—C1	C4—C11—F1112 111.4		
$C_{11} C_{4} H_{41}$		113./	UI2—C	-11	113.2	
C11 - C4 - H41		115.8		-11 - 1112	109.0) (11)
C1 - C5 - C4		101.05 (12)		2 1121	104.4	J (11)
01-03-06		103.70 (12)	C2C1	э—птэт	108.9	

C4—C5—O6	109.83 (14)	C2-C13-H132	109.6
C1—C5—H51	111.5	H131—C13—H132	111.3
C4—C5—H51	114.7	C2-C13-H133	109.5
O6—C5—H51	113.0	H131—C13—H133	107.0
C5—O6—C7	109.79 (12)	H132—C13—H133	110.5
O6—C7—O8	106.00 (12)	C1-C14-H141	109.1
O6—C7—C9	108.58 (16)	C1-C14-H142	107.9
O8—C7—C9	108.08 (14)	H141—C14—H142	110.5
O6—C7—C10	109.95 (16)	C1-C14-H143	108.8
O8—C7—C10	110.41 (14)	H141—C14—H143	110.0
C9—C7—C10	113.52 (15)	H142—C14—H143	110.5

Fig. 3

